HYDRAULIC FRACTURING JOB PLAN REAL-TIME REVISIONS UTILIZING DETECTED RESPONSE FEATURE DATA

The disclosure is directed to methods to design and revise hydraulic fracturing (HF) job plans. The methods can utilize one or more data sources from public, proprietary, confidential, and historical sources. The methods can build mathematical, statistical, machine learning, neural network, and deep...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Fulton, Dwight David, Potty, Ajish Sreeni Radhakrishnan, Walters, Harold Grayson, Bhardwaj, Manisha
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The disclosure is directed to methods to design and revise hydraulic fracturing (HF) job plans. The methods can utilize one or more data sources from public, proprietary, confidential, and historical sources. The methods can build mathematical, statistical, machine learning, neural network, and deep learning models to predict production outcomes based on the data source inputs. In some aspects, the data sources are processed, quality checked, and combined into composite data sources. In some aspects, ensemble modeling techniques can be applied to combine multiple data sources and multiple models. In some aspects, response features can be utilized as data inputs into the modeling process. In some aspects, time-series extracted features can be utilized as data inputs into the modeling process. In some aspects, the methods can be used to build a HF job plan prior to the start of work at a well site. In other aspects, the methods can be used to revise an existing HF job plan in real-time, such as after a treatment cycle, a pumping stage, or a time interval.