UNIFORM CHIP GAPS VIA INJECTION-MOLDED SOLDER PILLARS

Systems and techniques that facilitate uniform qubit chip gaps via injection-molded solder pillars are provided. In various embodiments, a device can comprise one or more injection-molded solder interconnects. In various aspects, the one or more injection-molded solder interconnects can couple at le...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Nah, Jae-Woong, Shao, Dongbing, Lewandowski, Eric Peter
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Systems and techniques that facilitate uniform qubit chip gaps via injection-molded solder pillars are provided. In various embodiments, a device can comprise one or more injection-molded solder interconnects. In various aspects, the one or more injection-molded solder interconnects can couple at least one qubit chip to an interposer chip. In various embodiments, the device can further comprise one or more injection-molded solder pillars. In various instances, the one or more injection-molded solder pillars can be between the at least one quit chip and the interposer chip. In various cases, the one or more injection-molded solder pillars can be in parallel with the one or more injection-molded solder interconnects. In various embodiments, the one or more injection-molded solder pillars can facilitate and/or maintain a uniform gap between the at least one qubit chip and the interposer chip. In various embodiments, a melting point of the one or more injection-molded solder pillars can be higher than a melting point of the one or more injection-molded solder interconnects. In various embodiments, the one or more injection-molded solder pillars can be superconductors. In various embodiments, a yield strength of the one or more injection-molded solder pillars can be between 3,000 pounds per square inch and 15,000 pounds per square inch, which can be higher than a yield strength of the one or more injection-molded solder interconnects. In various embodiments, the one or more injection-molded solder pillars can be binary tin alloys, tertiary tin alloys, and/or quaternary tin alloys.