A DEAD-TIME CORRECTION METHOD IN QUALTITATIVE POSITRON EMISSION TOMOGRAPHY (PET) RECONSTRUCTION FOR VARIOUS OBJECTS AND RADIOACTIVITY DISTRIBUTIONS

A non-transitory computer-readable medium stores instructions readable and executable by a workstation (18) including at least one electronic processor (20) to perform an image reconstruction method (100). The method includes: determining singles rates of a plurality of radiation detectors (17) in a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: BAI, Chuanyong, YE, Jinghan, DOUGHTY, Gregory, ROMANOV, Leonid, MAO, Yanfei, SONG, Xiyun, ANDREYEV, Andriy, HU, Zhiqiang
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A non-transitory computer-readable medium stores instructions readable and executable by a workstation (18) including at least one electronic processor (20) to perform an image reconstruction method (100). The method includes: determining singles rates of a plurality of radiation detectors (17) in a frame of imaging data detected by the radiation detectors; determining an energy correction factor (Nwgt) for each detector for each radiation detector based on an energy spectrum distribution of gamma rays incident on the radiation detector during acquisition of the frame of imaging data; determining a singles live time correction factor for each radiation detector from the singles rate and the energy correction factor determined for the radiation detector; determining a system coincidence live time correction factor from the system singles rate; for each line of response (LOR) of a plurality of LORs connecting pairs of radiation detectors, determining a live time correction factor for the LOR from the determined singles live time correction factors of the pair of radiation detectors connected by the LOR and the determined system coincidence live time correction factor; and reconstructing the frame of imaging data using the determined LOR live time correction factors.