RNA SILENCING NANOZYMES

Disclosed herein are improved nanozymes for targeting RNA. The disclosed nanozymes are synthesized using recombinant RNase A with site-specific cysteine-substituted mutations that can be covalently functionalized with a length-tunable multi-thiol tether and then loaded onto gold particles through mu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Cao, Yunwei Charles, Jiang, Tian
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Disclosed herein are improved nanozymes for targeting RNA. The disclosed nanozymes are synthesized using recombinant RNase A with site-specific cysteine-substituted mutations that can be covalently functionalized with a length-tunable multi-thiol tether and then loaded onto gold particles through multiple gold-sulfur bonds. This new RNase A loading mechanism is site specific, and it allows high-density loading of alkylthiol modified DNA oligonucleotides. The disclosed nanozymes can also include additional capturer strands and/or involve DNA-recombinant-RNase-A unibodies to further increase the nanozyme's enzymatic activity and target selectivity. Also disclosed are functional on-off switchable nanozymes to control nanozyme activity. In some embodiments, the disclosed nanozyme are core-free hollow forms. The removal of the inorganic nanoparticle cores from nanozymes can effectively eliminate the potential long-term toxicity induced by the core, and also creates a cavity for loading and delivery of small molecule drugs.