REAGENT TO LABEL PROTEINS VIA LYSINE ISOPEPTIDE BONDS

Covalently cross-linked pilus polymers displayed on the cell surface of Gram-positive bacteria are assembled by class C sortase enzymes. These pilus-specific transpeptidases located on the bacterial membrane catalyze a two-step protein ligation reaction-first, cleaving the LPXTG motif of one pilin p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Amer, Brendan Rayhan, Ton-That, Hung, Clubb, Robert T, Fu, Janine Y, Chang, Chungyu, McConnell, Scott
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Covalently cross-linked pilus polymers displayed on the cell surface of Gram-positive bacteria are assembled by class C sortase enzymes. These pilus-specific transpeptidases located on the bacterial membrane catalyze a two-step protein ligation reaction-first, cleaving the LPXTG motif of one pilin protomer to form an acyl-enzyme intermediate, and second, joining the terminal threonine to the nucleophilic lysine residue residing within the pilin motif of another pilin protomer. Informed by the high-resolution crystal structures of corynebacterial pilus-specific sortase (SrtA) and by developing structural variants of the sortase enzyme whose catalytic pocket has been unmasked by activating mutations, we have developed new reagents capable of forming isopeptide bonds in vitro. The reagents disclosed herein can catalyze ligation of isolated SpaA domains in vitro provide a facile and versatile new platform for protein engineering and bio-conjugation that has major implications for biotechnology.