DECENTRALIZED FEDERATED LEARNING SYSTEM

A participant node of a distributed ledger network may identify a distributed federated learning (DFL) smart contract stored on a blockchain. The DFL smart contract may include an aggregation sequence. The aggregation sequence may include an ordered sequence of participant node identifiers. The part...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Le, Anh-Dung, Giordano, Giuseppe, Pasic, Haris, Schiatti, Luca
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Le, Anh-Dung
Giordano, Giuseppe
Pasic, Haris
Schiatti, Luca
description A participant node of a distributed ledger network may identify a distributed federated learning (DFL) smart contract stored on a blockchain. The DFL smart contract may include an aggregation sequence. The aggregation sequence may include an ordered sequence of participant node identifiers. The participant node may generate a trained model by training a global model with training data. The participant node may detect, on the blockchain, a first transition token indicative of a first model previously aggregated by another participant node. The participant node may receive the first model. The participant node may aggregate the first model with the trained model to generate a second model. The participant node may store, on the blockchain, a second transition token indicative of the second model. A successor node identified in the aggregation sequence may further aggregate the second model with an additional model in response to detection of the second transition token.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2021067339A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2021067339A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2021067339A13</originalsourceid><addsrcrecordid>eNrjZFB3cXV29QsJcvTxjHJ1UXBzdXENcgwBsnxcHYP8PP3cFYIjg0NcfXkYWNMSc4pTeaE0N4Oym2uIs4duakF-fGpxQWJyal5qSXxosJGBkaGBmbmxsaWjoTFxqgB-PSTb</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>DECENTRALIZED FEDERATED LEARNING SYSTEM</title><source>esp@cenet</source><creator>Le, Anh-Dung ; Giordano, Giuseppe ; Pasic, Haris ; Schiatti, Luca</creator><creatorcontrib>Le, Anh-Dung ; Giordano, Giuseppe ; Pasic, Haris ; Schiatti, Luca</creatorcontrib><description>A participant node of a distributed ledger network may identify a distributed federated learning (DFL) smart contract stored on a blockchain. The DFL smart contract may include an aggregation sequence. The aggregation sequence may include an ordered sequence of participant node identifiers. The participant node may generate a trained model by training a global model with training data. The participant node may detect, on the blockchain, a first transition token indicative of a first model previously aggregated by another participant node. The participant node may receive the first model. The participant node may aggregate the first model with the trained model to generate a second model. The participant node may store, on the blockchain, a second transition token indicative of the second model. A successor node identified in the aggregation sequence may further aggregate the second model with an additional model in response to detection of the second transition token.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRIC DIGITAL DATA PROCESSING ; ELECTRICITY ; PHYSICS ; TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210304&amp;DB=EPODOC&amp;CC=US&amp;NR=2021067339A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,309,782,887,25571,76555</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210304&amp;DB=EPODOC&amp;CC=US&amp;NR=2021067339A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Le, Anh-Dung</creatorcontrib><creatorcontrib>Giordano, Giuseppe</creatorcontrib><creatorcontrib>Pasic, Haris</creatorcontrib><creatorcontrib>Schiatti, Luca</creatorcontrib><title>DECENTRALIZED FEDERATED LEARNING SYSTEM</title><description>A participant node of a distributed ledger network may identify a distributed federated learning (DFL) smart contract stored on a blockchain. The DFL smart contract may include an aggregation sequence. The aggregation sequence may include an ordered sequence of participant node identifiers. The participant node may generate a trained model by training a global model with training data. The participant node may detect, on the blockchain, a first transition token indicative of a first model previously aggregated by another participant node. The participant node may receive the first model. The participant node may aggregate the first model with the trained model to generate a second model. The participant node may store, on the blockchain, a second transition token indicative of the second model. A successor node identified in the aggregation sequence may further aggregate the second model with an additional model in response to detection of the second transition token.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>ELECTRICITY</subject><subject>PHYSICS</subject><subject>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZFB3cXV29QsJcvTxjHJ1UXBzdXENcgwBsnxcHYP8PP3cFYIjg0NcfXkYWNMSc4pTeaE0N4Oym2uIs4duakF-fGpxQWJyal5qSXxosJGBkaGBmbmxsaWjoTFxqgB-PSTb</recordid><startdate>20210304</startdate><enddate>20210304</enddate><creator>Le, Anh-Dung</creator><creator>Giordano, Giuseppe</creator><creator>Pasic, Haris</creator><creator>Schiatti, Luca</creator><scope>EVB</scope></search><sort><creationdate>20210304</creationdate><title>DECENTRALIZED FEDERATED LEARNING SYSTEM</title><author>Le, Anh-Dung ; Giordano, Giuseppe ; Pasic, Haris ; Schiatti, Luca</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2021067339A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>ELECTRICITY</topic><topic>PHYSICS</topic><topic>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</topic><toplevel>online_resources</toplevel><creatorcontrib>Le, Anh-Dung</creatorcontrib><creatorcontrib>Giordano, Giuseppe</creatorcontrib><creatorcontrib>Pasic, Haris</creatorcontrib><creatorcontrib>Schiatti, Luca</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Le, Anh-Dung</au><au>Giordano, Giuseppe</au><au>Pasic, Haris</au><au>Schiatti, Luca</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>DECENTRALIZED FEDERATED LEARNING SYSTEM</title><date>2021-03-04</date><risdate>2021</risdate><abstract>A participant node of a distributed ledger network may identify a distributed federated learning (DFL) smart contract stored on a blockchain. The DFL smart contract may include an aggregation sequence. The aggregation sequence may include an ordered sequence of participant node identifiers. The participant node may generate a trained model by training a global model with training data. The participant node may detect, on the blockchain, a first transition token indicative of a first model previously aggregated by another participant node. The participant node may receive the first model. The participant node may aggregate the first model with the trained model to generate a second model. The participant node may store, on the blockchain, a second transition token indicative of the second model. A successor node identified in the aggregation sequence may further aggregate the second model with an additional model in response to detection of the second transition token.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2021067339A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC COMMUNICATION TECHNIQUE
ELECTRIC DIGITAL DATA PROCESSING
ELECTRICITY
PHYSICS
TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION
title DECENTRALIZED FEDERATED LEARNING SYSTEM
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T02%3A08%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Le,%20Anh-Dung&rft.date=2021-03-04&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2021067339A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true