DECENTRALIZED FEDERATED LEARNING SYSTEM
A participant node of a distributed ledger network may identify a distributed federated learning (DFL) smart contract stored on a blockchain. The DFL smart contract may include an aggregation sequence. The aggregation sequence may include an ordered sequence of participant node identifiers. The part...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Le, Anh-Dung Giordano, Giuseppe Pasic, Haris Schiatti, Luca |
description | A participant node of a distributed ledger network may identify a distributed federated learning (DFL) smart contract stored on a blockchain. The DFL smart contract may include an aggregation sequence. The aggregation sequence may include an ordered sequence of participant node identifiers. The participant node may generate a trained model by training a global model with training data. The participant node may detect, on the blockchain, a first transition token indicative of a first model previously aggregated by another participant node. The participant node may receive the first model. The participant node may aggregate the first model with the trained model to generate a second model. The participant node may store, on the blockchain, a second transition token indicative of the second model. A successor node identified in the aggregation sequence may further aggregate the second model with an additional model in response to detection of the second transition token. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2021067339A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2021067339A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2021067339A13</originalsourceid><addsrcrecordid>eNrjZFB3cXV29QsJcvTxjHJ1UXBzdXENcgwBsnxcHYP8PP3cFYIjg0NcfXkYWNMSc4pTeaE0N4Oym2uIs4duakF-fGpxQWJyal5qSXxosJGBkaGBmbmxsaWjoTFxqgB-PSTb</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>DECENTRALIZED FEDERATED LEARNING SYSTEM</title><source>esp@cenet</source><creator>Le, Anh-Dung ; Giordano, Giuseppe ; Pasic, Haris ; Schiatti, Luca</creator><creatorcontrib>Le, Anh-Dung ; Giordano, Giuseppe ; Pasic, Haris ; Schiatti, Luca</creatorcontrib><description>A participant node of a distributed ledger network may identify a distributed federated learning (DFL) smart contract stored on a blockchain. The DFL smart contract may include an aggregation sequence. The aggregation sequence may include an ordered sequence of participant node identifiers. The participant node may generate a trained model by training a global model with training data. The participant node may detect, on the blockchain, a first transition token indicative of a first model previously aggregated by another participant node. The participant node may receive the first model. The participant node may aggregate the first model with the trained model to generate a second model. The participant node may store, on the blockchain, a second transition token indicative of the second model. A successor node identified in the aggregation sequence may further aggregate the second model with an additional model in response to detection of the second transition token.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRIC DIGITAL DATA PROCESSING ; ELECTRICITY ; PHYSICS ; TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210304&DB=EPODOC&CC=US&NR=2021067339A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,309,782,887,25571,76555</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210304&DB=EPODOC&CC=US&NR=2021067339A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Le, Anh-Dung</creatorcontrib><creatorcontrib>Giordano, Giuseppe</creatorcontrib><creatorcontrib>Pasic, Haris</creatorcontrib><creatorcontrib>Schiatti, Luca</creatorcontrib><title>DECENTRALIZED FEDERATED LEARNING SYSTEM</title><description>A participant node of a distributed ledger network may identify a distributed federated learning (DFL) smart contract stored on a blockchain. The DFL smart contract may include an aggregation sequence. The aggregation sequence may include an ordered sequence of participant node identifiers. The participant node may generate a trained model by training a global model with training data. The participant node may detect, on the blockchain, a first transition token indicative of a first model previously aggregated by another participant node. The participant node may receive the first model. The participant node may aggregate the first model with the trained model to generate a second model. The participant node may store, on the blockchain, a second transition token indicative of the second model. A successor node identified in the aggregation sequence may further aggregate the second model with an additional model in response to detection of the second transition token.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>ELECTRICITY</subject><subject>PHYSICS</subject><subject>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZFB3cXV29QsJcvTxjHJ1UXBzdXENcgwBsnxcHYP8PP3cFYIjg0NcfXkYWNMSc4pTeaE0N4Oym2uIs4duakF-fGpxQWJyal5qSXxosJGBkaGBmbmxsaWjoTFxqgB-PSTb</recordid><startdate>20210304</startdate><enddate>20210304</enddate><creator>Le, Anh-Dung</creator><creator>Giordano, Giuseppe</creator><creator>Pasic, Haris</creator><creator>Schiatti, Luca</creator><scope>EVB</scope></search><sort><creationdate>20210304</creationdate><title>DECENTRALIZED FEDERATED LEARNING SYSTEM</title><author>Le, Anh-Dung ; Giordano, Giuseppe ; Pasic, Haris ; Schiatti, Luca</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2021067339A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>ELECTRICITY</topic><topic>PHYSICS</topic><topic>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</topic><toplevel>online_resources</toplevel><creatorcontrib>Le, Anh-Dung</creatorcontrib><creatorcontrib>Giordano, Giuseppe</creatorcontrib><creatorcontrib>Pasic, Haris</creatorcontrib><creatorcontrib>Schiatti, Luca</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Le, Anh-Dung</au><au>Giordano, Giuseppe</au><au>Pasic, Haris</au><au>Schiatti, Luca</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>DECENTRALIZED FEDERATED LEARNING SYSTEM</title><date>2021-03-04</date><risdate>2021</risdate><abstract>A participant node of a distributed ledger network may identify a distributed federated learning (DFL) smart contract stored on a blockchain. The DFL smart contract may include an aggregation sequence. The aggregation sequence may include an ordered sequence of participant node identifiers. The participant node may generate a trained model by training a global model with training data. The participant node may detect, on the blockchain, a first transition token indicative of a first model previously aggregated by another participant node. The participant node may receive the first model. The participant node may aggregate the first model with the trained model to generate a second model. The participant node may store, on the blockchain, a second transition token indicative of the second model. A successor node identified in the aggregation sequence may further aggregate the second model with an additional model in response to detection of the second transition token.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2021067339A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC COMMUNICATION TECHNIQUE ELECTRIC DIGITAL DATA PROCESSING ELECTRICITY PHYSICS TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION |
title | DECENTRALIZED FEDERATED LEARNING SYSTEM |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T02%3A08%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Le,%20Anh-Dung&rft.date=2021-03-04&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2021067339A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |