DECENTRALIZED FEDERATED LEARNING SYSTEM

A participant node of a distributed ledger network may identify a distributed federated learning (DFL) smart contract stored on a blockchain. The DFL smart contract may include an aggregation sequence. The aggregation sequence may include an ordered sequence of participant node identifiers. The part...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Le, Anh-Dung, Giordano, Giuseppe, Pasic, Haris, Schiatti, Luca
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A participant node of a distributed ledger network may identify a distributed federated learning (DFL) smart contract stored on a blockchain. The DFL smart contract may include an aggregation sequence. The aggregation sequence may include an ordered sequence of participant node identifiers. The participant node may generate a trained model by training a global model with training data. The participant node may detect, on the blockchain, a first transition token indicative of a first model previously aggregated by another participant node. The participant node may receive the first model. The participant node may aggregate the first model with the trained model to generate a second model. The participant node may store, on the blockchain, a second transition token indicative of the second model. A successor node identified in the aggregation sequence may further aggregate the second model with an additional model in response to detection of the second transition token.