SYSTEM AND METHOD USING MACHINE LEARNING FOR IRIS TRACKING, MEASUREMENT, AND SIMULATION

This document relates to hybrid eye center localization using machine learning, namely cascaded regression and hand-crafted model fitting to improve a computer. There are proposed systems and methods of eye center (iris) detection using a cascade regressor (cascade of regression forests) as well as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Levinshtein, Alex, Aarabi, Parham, Phung, Edmund
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This document relates to hybrid eye center localization using machine learning, namely cascaded regression and hand-crafted model fitting to improve a computer. There are proposed systems and methods of eye center (iris) detection using a cascade regressor (cascade of regression forests) as well as systems and methods for training a cascaded regressor. For detection, the eyes are detected using a facial feature alignment method. The robustness of localization is improved by using both advanced features and powerful regression machinery. Localization is made more accurate by adding a robust circle fitting post-processing step. Finally, using a simple hand-crafted method for eye center localization, there is provided a method to train the cascaded regressor without the need for manually annotated training data. Evaluation of the approach shows that it achieves state-of-the-art performance.