APPARATUS AND METHOD FOR ANALYZING CHEMICAL STATE OF BATTERY MATERIAL

A chemical state analysis apparatus 10 includes: an excitation source 11 configured to irradiate an irradiation region A of a predetermined surface in a sample S containing a battery material with an excitation rays for generating characteristic X-rays of the battery material; an analyzing crystal 1...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: SATO, Kenji, YONEDA, Tetsuya, TOKUDA, Satoshi, ADACHI, Susumu, IZUMI, Takuro
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A chemical state analysis apparatus 10 includes: an excitation source 11 configured to irradiate an irradiation region A of a predetermined surface in a sample S containing a battery material with an excitation rays for generating characteristic X-rays of the battery material; an analyzing crystal 13 of a flat plate arranged so as to face the irradiation region A; a slit 12 arranged between the irradiation region A and the analyzing crystal 13, the slit being arranged in parallel to the irradiation region A and a predetermined crystal plane of the analyzing crystal 13; an X-ray linear sensor 15 in which linear detecting elements 151 each having a length in a direction parallel to the slit 12 are arranged in a direction perpendicular to the slit; a wavelength spectrum generation unit 161 configured to generate a wavelength spectrum based on intensity of the characteristic X-rays detected by the X-ray linear sensor 15; a peak wavelength determination unit 162 configured to determine a peak wavelength which is a wavelength in a peak of the wavelength spectrum; and a chemical state specification unit 163 configured to specify a value for specifying a chemical state of the battery material in the sample S from the peak wavelength determined by the peak wavelength determination unit 162 and a standard curve representing a relation between a value representing the chemical state and the peak wavelength.