Method for Performing Multi-Agent Reinforcement Learning in the Presence of Unreliable Communications Via Distributed Consensus

A system is provided for performing a predetermined function within a total area of operation, wherein the system includes a plurality of autonomous agents. Each autonomous agent is able to detect respective local parameters. Each autonomous agent uses a Kalman filter component to establish an envir...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Reeder, John, Migliori, Benjamin J, Walton, Michael W
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A system is provided for performing a predetermined function within a total area of operation, wherein the system includes a plurality of autonomous agents. Each autonomous agent is able to detect respective local parameters. Each autonomous agent uses a Kalman filter component to establish an environment state based a plurality of state measurements over time. The output of the Kalman filter component within a respective agent is applied to reinforcement learning by an actor-critic task controller, within the respective agent, to determine a subsequent action to be performed by the respective agent in accordance with a reward function. Each agent includes a Kalman consensus filter that addresses errors of the plurality of state measurements over time.