OPTIMIZED NEURAL NETWORK INPUT STRIDE METHOD AND APPARATUS
A convolutional layer in a convolutional neural network uses a predetermined horizontal input stride and a predetermined vertical input stride that are greater than 1 while the hardware forming the convolutional layer operates using an input stride of 1. Each original weight kernel of a plurality of...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A convolutional layer in a convolutional neural network uses a predetermined horizontal input stride and a predetermined vertical input stride that are greater than 1 while the hardware forming the convolutional layer operates using an input stride of 1. Each original weight kernel of a plurality of sets of original weight kernels is subdivided based on the predetermined horizontal and vertical input strides to form a set of a plurality of sub-kernels for each set of original weight kernels. Each of a plurality of IFMs is subdivided based on the predetermined horizontal and vertical input strides to form a plurality of sub-maps. Each sub-map is convolved by the corresponding sub-kernel for a set of original weight kernels using an input stride of 1. A convolved result of each sub-map and the corresponding sub-kernel is summed to form an output feature map. |
---|