METHOD FOR REDUCING COST AND INCREASING ACCURACY OF VARIATIONAL QUANTUM CIRCUIT OPTIMIZATION

The optimization of circuit parameters of variational quantum algorithms is a challenge for the practical deployment of near-term quantum computing algorithms. Embodiments relate to a hybrid quantum-classical optimization methods. In a first stage, analytical tomography fittings are performed for a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: McMahon, Peter L, Parrish, Robert M, Rodriguez, Asier Ozaeta, Iosue, Joseph T
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The optimization of circuit parameters of variational quantum algorithms is a challenge for the practical deployment of near-term quantum computing algorithms. Embodiments relate to a hybrid quantum-classical optimization methods. In a first stage, analytical tomography fittings are performed for a local cluster of circuit parameters via sampling of the observable objective function at quadrature points in the circuit parameters. Optimization may be used to determine the optimal circuit parameters within the cluster, with the other circuit parameters frozen. In a second stage, different clusters of circuit parameters are then optimized in "Jacobi sweeps," leading to a monotonically convergent fixed-point procedure. In a third stage, the iterative history of the fixed-point Jacobi procedure may be used to accelerate the convergence by applying Anderson acceleration/Pulay's direct inversion of the iterative subspace (DIIS).