TIME SERIES CLUSTERING ANALYSIS FOR FORECASTING DEMAND

Product demand forecasting accuracy utilizes partitional clustering of time series data with dynamic time warping. The product demand forecasting disclosed herein is particularly suited to forecasting product demand for products with limited sales data. Time-series sales data of a producs (or group...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: GHOSH, Koel, LE, Luyen
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator GHOSH, Koel
LE, Luyen
description Product demand forecasting accuracy utilizes partitional clustering of time series data with dynamic time warping. The product demand forecasting disclosed herein is particularly suited to forecasting product demand for products with limited sales data. Time-series sales data of a producs (or group of products) with limited sales data (e.g. a sparse or no time series of sales data) are dynamically time warped with sales data of products, or groups of products, having extensive sales data (e.g., an extensive time series of sales data) to determine a clustering model with an optimal number of clusters and a prototype time series for each cluster in the model. The prototype time series for the cluster in which the product (or group of products) with limited sales data lies is utilized as its product demand forecast.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2020294067A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2020294067A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2020294067A13</originalsourceid><addsrcrecordid>eNrjZDAL8fR1VQh2DfJ0DVZw9gkNDgEy_dwVHP0cfSKDPYMV3PyDQNjV2TE4BCTh4urr6OfCw8CalphTnMoLpbkZlN1cQ5w9dFML8uNTiwsSk1PzUkviQ4ONDIDQ0sTAzNzR0Jg4VQDCPSj0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>TIME SERIES CLUSTERING ANALYSIS FOR FORECASTING DEMAND</title><source>esp@cenet</source><creator>GHOSH, Koel ; LE, Luyen</creator><creatorcontrib>GHOSH, Koel ; LE, Luyen</creatorcontrib><description>Product demand forecasting accuracy utilizes partitional clustering of time series data with dynamic time warping. The product demand forecasting disclosed herein is particularly suited to forecasting product demand for products with limited sales data. Time-series sales data of a producs (or group of products) with limited sales data (e.g. a sparse or no time series of sales data) are dynamically time warped with sales data of products, or groups of products, having extensive sales data (e.g., an extensive time series of sales data) to determine a clustering model with an optimal number of clusters and a prototype time series for each cluster in the model. The prototype time series for the cluster in which the product (or group of products) with limited sales data lies is utilized as its product demand forecast.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200917&amp;DB=EPODOC&amp;CC=US&amp;NR=2020294067A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200917&amp;DB=EPODOC&amp;CC=US&amp;NR=2020294067A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>GHOSH, Koel</creatorcontrib><creatorcontrib>LE, Luyen</creatorcontrib><title>TIME SERIES CLUSTERING ANALYSIS FOR FORECASTING DEMAND</title><description>Product demand forecasting accuracy utilizes partitional clustering of time series data with dynamic time warping. The product demand forecasting disclosed herein is particularly suited to forecasting product demand for products with limited sales data. Time-series sales data of a producs (or group of products) with limited sales data (e.g. a sparse or no time series of sales data) are dynamically time warped with sales data of products, or groups of products, having extensive sales data (e.g., an extensive time series of sales data) to determine a clustering model with an optimal number of clusters and a prototype time series for each cluster in the model. The prototype time series for the cluster in which the product (or group of products) with limited sales data lies is utilized as its product demand forecast.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDAL8fR1VQh2DfJ0DVZw9gkNDgEy_dwVHP0cfSKDPYMV3PyDQNjV2TE4BCTh4urr6OfCw8CalphTnMoLpbkZlN1cQ5w9dFML8uNTiwsSk1PzUkviQ4ONDIDQ0sTAzNzR0Jg4VQDCPSj0</recordid><startdate>20200917</startdate><enddate>20200917</enddate><creator>GHOSH, Koel</creator><creator>LE, Luyen</creator><scope>EVB</scope></search><sort><creationdate>20200917</creationdate><title>TIME SERIES CLUSTERING ANALYSIS FOR FORECASTING DEMAND</title><author>GHOSH, Koel ; LE, Luyen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2020294067A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>GHOSH, Koel</creatorcontrib><creatorcontrib>LE, Luyen</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>GHOSH, Koel</au><au>LE, Luyen</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>TIME SERIES CLUSTERING ANALYSIS FOR FORECASTING DEMAND</title><date>2020-09-17</date><risdate>2020</risdate><abstract>Product demand forecasting accuracy utilizes partitional clustering of time series data with dynamic time warping. The product demand forecasting disclosed herein is particularly suited to forecasting product demand for products with limited sales data. Time-series sales data of a producs (or group of products) with limited sales data (e.g. a sparse or no time series of sales data) are dynamically time warped with sales data of products, or groups of products, having extensive sales data (e.g., an extensive time series of sales data) to determine a clustering model with an optimal number of clusters and a prototype time series for each cluster in the model. The prototype time series for the cluster in which the product (or group of products) with limited sales data lies is utilized as its product demand forecast.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2020294067A1
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
HANDLING RECORD CARRIERS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
title TIME SERIES CLUSTERING ANALYSIS FOR FORECASTING DEMAND
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A03%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=GHOSH,%20Koel&rft.date=2020-09-17&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2020294067A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true