TIME SERIES CLUSTERING ANALYSIS FOR FORECASTING DEMAND
Product demand forecasting accuracy utilizes partitional clustering of time series data with dynamic time warping. The product demand forecasting disclosed herein is particularly suited to forecasting product demand for products with limited sales data. Time-series sales data of a producs (or group...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Product demand forecasting accuracy utilizes partitional clustering of time series data with dynamic time warping. The product demand forecasting disclosed herein is particularly suited to forecasting product demand for products with limited sales data. Time-series sales data of a producs (or group of products) with limited sales data (e.g. a sparse or no time series of sales data) are dynamically time warped with sales data of products, or groups of products, having extensive sales data (e.g., an extensive time series of sales data) to determine a clustering model with an optimal number of clusters and a prototype time series for each cluster in the model. The prototype time series for the cluster in which the product (or group of products) with limited sales data lies is utilized as its product demand forecast. |
---|