SYSTEM AND METHOD FOR TIME-DEPENDENT MACHINE LEARNING ARCHITECTURE

Described in various embodiments herein is a technical solution directed to decomposition of time as an input for machine learning, and various related mechanisms and data structures. In particular, specific machines, computer-readable media, computer processes, and methods are described that are ut...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: GOEL, Rishab, KAZEMI, Seyed Mehran, EGHBALI, Sepehr, RAMANAN, Janahan Mathuran, SAHOTA, Jaspreet
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Described in various embodiments herein is a technical solution directed to decomposition of time as an input for machine learning, and various related mechanisms and data structures. In particular, specific machines, computer-readable media, computer processes, and methods are described that are utilized to improve machine learning outcomes, including, improving accuracy, convergence speed (e.g., reduced epochs for training), and reduced overall computational resource requirements. A vector representation of continuous time containing a periodic function with frequency and phase-shift learnable parameters is used to decompose time into output dimensions for improved tracking of periodic behavior of a feature. The vector representation is used to modify time inputs in machine learning architectures.