MACHINE LEARNING-AUGMENTED GEOPHYSICAL INVERSION

A method and system of machine learning-augmented geophysical inversion includes obtaining measured data; obtaining prior subsurface data; (a) partially training a data autoencoder with the measured data to learn a fraction of data space representations and generate a data space encoder; (b) partial...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: DENLI, HUSEYIN, LIU, KUANG-HUNG
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A method and system of machine learning-augmented geophysical inversion includes obtaining measured data; obtaining prior subsurface data; (a) partially training a data autoencoder with the measured data to learn a fraction of data space representations and generate a data space encoder; (b) partially training a model autoencoder with the prior subsurface data to learn a fraction of model space representations and generate a model space decoder; (c) forming an augmented forward model with the model space decoder, the data space encoder, and a physics-based forward model; (d) solving an inversion problem with the augmented forward model to generate an inversion solution; and iteratively repeating (a)-(d) until convergence of the inversion solution, wherein, for each iteration: partially training the data and model autoencoders starts with learned weights from an immediately-previous iteration; and solving the inversion problem starts with super parameters from the previous iteration.