Verification Of Iterative Closest Point Alignments For Autonomous Vehicles
Aspects of the disclosure relate to training and using a model for verifying accuracy of ICP alignments or alignments between data points using an iterative closest point algorithm. For instance, a model may be trained using ICP alignment data, including alignments between an object appearing in LID...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Aspects of the disclosure relate to training and using a model for verifying accuracy of ICP alignments or alignments between data points using an iterative closest point algorithm. For instance, a model may be trained using ICP alignment data, including alignments between an object appearing in LIDAR sensor frames. The training may also include setting a definition for a trusted ICP alignment. In this regard, the model may be trained such that, n response to receiving additional LIDAR sensor frames and corresponding additional ICP alignment data, output a value indicative of whether the additional ICP alignment data is trusted according to the definition. The model may then be used to control a vehicle in an autonomous driving mode by determining whether alignment data for object determined using the ICP algorithm should be trusted. |
---|