ANTIVIRAL COMPOSITION AND APPLICATIONS OF IRON-DOPED APATITE NANOPARTICLES
Iron-doped apatite nanoparticles (IDANPs) are useful for the prevention, treatment, or alleviation of signs or symptoms associated with viral activation or infection. IDANPs have demonstrated a significant influence over herpes simplex virus 1 (HSV-1) infection of two mammalian cell lines. Specifica...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Iron-doped apatite nanoparticles (IDANPs) are useful for the prevention, treatment, or alleviation of signs or symptoms associated with viral activation or infection. IDANPs have demonstrated a significant influence over herpes simplex virus 1 (HSV-1) infection of two mammalian cell lines. Specifically, IDANPs decreased HSV-1 infection of African Green Monkey kidney epithelial (Vero) cells by 84% and HSV-1 infection of human lung bronchus (BEAS-2B) cells by 71%. In a mouse model, IDANPs delivered at various concentrations and by multiple delivery media, prevented redness, swelling, and/or sores caused by HSV-1 infection in 100% of mice tested during the treatment period. Further, once IDANP treatment had ceased, mice did not experience redness, swelling, and/or sores for at least one and up to nine days thereafter, demonstrating IDANPs not only prevent signs and symptoms during treatment, but that IDANPs prevent future signs and symptoms caused by mammalian viral infections. IDANPs consist of hydroxyapatite (HA) doped with iron. HA is a mineral known to be biocompatible and analogous to the inorganic constituent of mammalian bone and teeth and has been approved by the Food and Drug Administration (FDA) for many applications in medicine and dentistry. Lactate Dehydrogenase (LDH) and XTT (2,3-Bis 2-methoxy-4-nitro-5-sulfophenyl-2H-tetrazolium-5-carboxanilide inner salt) cytotoxicity assays revealed that IDANPs are largely non-toxic to Vero, BEAS-2B, and human cervical cancer (HeLa) cells lines. HSV-1 afflicted individuals in the United States have been estimated as high as ⅔ the population. Because IDANPs dramatically decrease HSV-1 infection and are largely non-toxic, their application as an antiviral agent is evident. Further, although iron(III) alone has been shown to diminish replication of DNA and RNA viruses, IDANP cytotoxicity studies indicate that encasement and delivery of iron within an apatite unit cell structure diminishes significantly, and in some cases eliminates, cytotoxicity posed by the introduction of iron(III) alone. |
---|