DEEP LEARNING MODEL EXECUTION USING TAGGED DATA
Traditionally, a software application is developed, tested, and then published for use by end users. Any subsequent update made to the software application is generally in the form of a human programmed modification made to the code in the software application itself, and further only becomes usable...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Traditionally, a software application is developed, tested, and then published for use by end users. Any subsequent update made to the software application is generally in the form of a human programmed modification made to the code in the software application itself, and further only becomes usable once tested, published, and installed by end users having the previous version of the software application. This typical software application lifecycle causes delays in not only generating improvements to software applications, but also to those improvements being made accessible to end users. To help avoid these delays and improve performance of software applications, deep learning models may be made accessible to the software applications for use in providing inferenced data to the software applications, which the software applications may then use as desired. These deep learning models can furthermore be improved independently of the software applications using manual and/or automated processes. |
---|