PERSONALIZATION ENHANCED RECOMMENDATION MODELS
Methods, systems, apparatuses, and computer program products are provided for a two-phase technique for generating content recommendations. In a first phase, a baseline recommender is configured to generate a baseline content recommendation using one or more content recommendation models, such as a...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Methods, systems, apparatuses, and computer program products are provided for a two-phase technique for generating content recommendations. In a first phase, a baseline recommender is configured to generate a baseline content recommendation using one or more content recommendation models, such as a Smart Adaptive Recommendations (SAR) model, Factorization Machine (FM) or Matrix Factorization (MF) models, collaborative filtering models, and/or any other machine-learning models or techniques. In a second phase, a personalized recommender implements a vector combiner configured to combine profile vectors, content vectors, and the baseline content recommendations to generate combined user vectors. A model generator may train a machine-learning model using the combined user vectors and training data comprising actual interaction behavior of the users, which may be then applied to identify a content recommendation for a particular user. |
---|