Methods and Devices for Standoff Differential Raman Spectroscopy with Increased Eye Safety and Decreased Risk of Explosion
A compact, portable Raman spectrometer makes fast, sensitive standoff measurements at little to no risk of eye injury or igniting the materials being probed. This spectrometer uses differential Raman spectroscopy and ambient light measurements to measure point-and-shoot Raman signatures of dark or h...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A compact, portable Raman spectrometer makes fast, sensitive standoff measurements at little to no risk of eye injury or igniting the materials being probed. This spectrometer uses differential Raman spectroscopy and ambient light measurements to measure point-and-shoot Raman signatures of dark or highly fluorescent materials at distances of 1 cm to 10 m or more. It scans the Raman pump beam(s) across the sample to reduce the risk of unduly heating or igniting the sample. Beam scanning also transforms the spectrometer into an instrument with a lower effective safety classification, reducing the risk of eye injury. The spectrometer's long standoff range automatic focusing make it easier to identify chemicals through clear and translucent obstacles, such as flow tubes, windows, and containers. And the spectrometer's components are light and small enough to be packaged in a handheld housing or housing suitable for a small robot to carry. |
---|