DETECTING AND ESTIMATING THE POSE OF AN OBJECT USING A NEURAL NETWORK MODEL

An object detection neural network receives an input image including an object and generates belief maps for vertices of a bounding volume that encloses the object. The belief maps are used, along with three-dimensional (3D) coordinates defining the bounding volume, to compute the pose of the object...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: To, Thang Hong, Birchfield, Stanley Thomas, Tremblay, Jonathan
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator To, Thang Hong
Birchfield, Stanley Thomas
Tremblay, Jonathan
description An object detection neural network receives an input image including an object and generates belief maps for vertices of a bounding volume that encloses the object. The belief maps are used, along with three-dimensional (3D) coordinates defining the bounding volume, to compute the pose of the object in 3D space during post-processing. When multiple objects are present in the image, the object detection neural network may also generate vector fields for the vertices. A vector field comprises vectors pointing from the vertex to a centroid of the object enclosed by the bounding volume defined by the vertex. The object detection neural network may be trained using images of computer-generated objects rendered in 3D scenes (e.g., photorealistic synthetic data). Automatically labelled training datasets may be easily constructed using the photorealistic synthetic data. The object detection neural network may be trained for object detection using only the photorealistic synthetic data.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2019355150A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2019355150A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2019355150A13</originalsourceid><addsrcrecordid>eNrjZPB2cQ1xdQ7x9HNXcPRzUXANDvH0dQRzQzxcFQL8g10V_N2AUgr-Tl5AdQqhwWClCn6uoUGOPkAqJNw_yFvB19_F1YeHgTUtMac4lRdKczMou7mGOHvophbkx6cWFyQmp-allsSHBhsZGFoam5oamho4GhoTpwoABK8uHw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>DETECTING AND ESTIMATING THE POSE OF AN OBJECT USING A NEURAL NETWORK MODEL</title><source>esp@cenet</source><creator>To, Thang Hong ; Birchfield, Stanley Thomas ; Tremblay, Jonathan</creator><creatorcontrib>To, Thang Hong ; Birchfield, Stanley Thomas ; Tremblay, Jonathan</creatorcontrib><description>An object detection neural network receives an input image including an object and generates belief maps for vertices of a bounding volume that encloses the object. The belief maps are used, along with three-dimensional (3D) coordinates defining the bounding volume, to compute the pose of the object in 3D space during post-processing. When multiple objects are present in the image, the object detection neural network may also generate vector fields for the vertices. A vector field comprises vectors pointing from the vertex to a centroid of the object enclosed by the bounding volume defined by the vertex. The object detection neural network may be trained using images of computer-generated objects rendered in 3D scenes (e.g., photorealistic synthetic data). Automatically labelled training datasets may be easily constructed using the photorealistic synthetic data. The object detection neural network may be trained for object detection using only the photorealistic synthetic data.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2019</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20191121&amp;DB=EPODOC&amp;CC=US&amp;NR=2019355150A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20191121&amp;DB=EPODOC&amp;CC=US&amp;NR=2019355150A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>To, Thang Hong</creatorcontrib><creatorcontrib>Birchfield, Stanley Thomas</creatorcontrib><creatorcontrib>Tremblay, Jonathan</creatorcontrib><title>DETECTING AND ESTIMATING THE POSE OF AN OBJECT USING A NEURAL NETWORK MODEL</title><description>An object detection neural network receives an input image including an object and generates belief maps for vertices of a bounding volume that encloses the object. The belief maps are used, along with three-dimensional (3D) coordinates defining the bounding volume, to compute the pose of the object in 3D space during post-processing. When multiple objects are present in the image, the object detection neural network may also generate vector fields for the vertices. A vector field comprises vectors pointing from the vertex to a centroid of the object enclosed by the bounding volume defined by the vertex. The object detection neural network may be trained using images of computer-generated objects rendered in 3D scenes (e.g., photorealistic synthetic data). Automatically labelled training datasets may be easily constructed using the photorealistic synthetic data. The object detection neural network may be trained for object detection using only the photorealistic synthetic data.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2019</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPB2cQ1xdQ7x9HNXcPRzUXANDvH0dQRzQzxcFQL8g10V_N2AUgr-Tl5AdQqhwWClCn6uoUGOPkAqJNw_yFvB19_F1YeHgTUtMac4lRdKczMou7mGOHvophbkx6cWFyQmp-allsSHBhsZGFoam5oamho4GhoTpwoABK8uHw</recordid><startdate>20191121</startdate><enddate>20191121</enddate><creator>To, Thang Hong</creator><creator>Birchfield, Stanley Thomas</creator><creator>Tremblay, Jonathan</creator><scope>EVB</scope></search><sort><creationdate>20191121</creationdate><title>DETECTING AND ESTIMATING THE POSE OF AN OBJECT USING A NEURAL NETWORK MODEL</title><author>To, Thang Hong ; Birchfield, Stanley Thomas ; Tremblay, Jonathan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2019355150A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2019</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>To, Thang Hong</creatorcontrib><creatorcontrib>Birchfield, Stanley Thomas</creatorcontrib><creatorcontrib>Tremblay, Jonathan</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>To, Thang Hong</au><au>Birchfield, Stanley Thomas</au><au>Tremblay, Jonathan</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>DETECTING AND ESTIMATING THE POSE OF AN OBJECT USING A NEURAL NETWORK MODEL</title><date>2019-11-21</date><risdate>2019</risdate><abstract>An object detection neural network receives an input image including an object and generates belief maps for vertices of a bounding volume that encloses the object. The belief maps are used, along with three-dimensional (3D) coordinates defining the bounding volume, to compute the pose of the object in 3D space during post-processing. When multiple objects are present in the image, the object detection neural network may also generate vector fields for the vertices. A vector field comprises vectors pointing from the vertex to a centroid of the object enclosed by the bounding volume defined by the vertex. The object detection neural network may be trained using images of computer-generated objects rendered in 3D scenes (e.g., photorealistic synthetic data). Automatically labelled training datasets may be easily constructed using the photorealistic synthetic data. The object detection neural network may be trained for object detection using only the photorealistic synthetic data.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2019355150A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
title DETECTING AND ESTIMATING THE POSE OF AN OBJECT USING A NEURAL NETWORK MODEL
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T19%3A33%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=To,%20Thang%20Hong&rft.date=2019-11-21&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2019355150A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true