DETECTING AND ESTIMATING THE POSE OF AN OBJECT USING A NEURAL NETWORK MODEL
An object detection neural network receives an input image including an object and generates belief maps for vertices of a bounding volume that encloses the object. The belief maps are used, along with three-dimensional (3D) coordinates defining the bounding volume, to compute the pose of the object...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An object detection neural network receives an input image including an object and generates belief maps for vertices of a bounding volume that encloses the object. The belief maps are used, along with three-dimensional (3D) coordinates defining the bounding volume, to compute the pose of the object in 3D space during post-processing. When multiple objects are present in the image, the object detection neural network may also generate vector fields for the vertices. A vector field comprises vectors pointing from the vertex to a centroid of the object enclosed by the bounding volume defined by the vertex. The object detection neural network may be trained using images of computer-generated objects rendered in 3D scenes (e.g., photorealistic synthetic data). Automatically labelled training datasets may be easily constructed using the photorealistic synthetic data. The object detection neural network may be trained for object detection using only the photorealistic synthetic data. |
---|