POSTERIOR IMAGE SAMPLING USING STATISTICAL LEARNING MODEL

Image reconstruction can include using a statistical or machine learning, MAP estimator, or other reconstruction technique to produce a reconstructed image from acquired imaging data. A Conditional Generative Adversarial Network (CGAN) technique can be used to train a Generator, using a Discriminato...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Adler, Jonas Anders, Öktem, Ozan
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Image reconstruction can include using a statistical or machine learning, MAP estimator, or other reconstruction technique to produce a reconstructed image from acquired imaging data. A Conditional Generative Adversarial Network (CGAN) technique can be used to train a Generator, using a Discriminator, to generate posterior distribution sampled images that can be displayed or further processed such as to help provide uncertainty information about a mean reconstruction image. Such uncertainty information can be useful to help understand or even visually modify the mean reconstruction image. Similar techniques can be used in a segmentation use-case, instead of a reconstruction use case. The uncertainty information can also be useful for other post-processing techniques.