METHODS FOR ADDITIVELY MANUFACTURING TURBINE ENGINE COMPONENTS VIA BINDER JET PRINTING WITH ALUMINUM-IRON-VANADIUM-SILICON ALLOYS
Methods for manufacturing an article include providing a three-dimensional computer model of the article and providing a metal alloy in powdered form. The metal alloy is an aluminum-iron-vanadium-silicon alloy. The powdered form includes a grain size range of about 5 to about 22 microns and a d50 gr...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Methods for manufacturing an article include providing a three-dimensional computer model of the article and providing a metal alloy in powdered form. The metal alloy is an aluminum-iron-vanadium-silicon alloy. The powdered form includes a grain size range of about 5 to about 22 microns and a d50 grain size average of about 10 to about 13 microns. The methods further include, at a binder jet printing apparatus, supplying the metal alloy and loading the three-dimensional model, and, using the binder jet printing apparatus, manufacturing the article in accordance with the loaded three-dimensional model in a layer-by-layer manner with the supplied metal alloy. A liquid binder is applied at each layer, and each layer has a thickness of about 10 to about 150 microns. The methods avoid remelting of the metal alloy and avoid metal alloy cooling rates of greater than about 100° F. per minute. |
---|