GENERALIZED ADDITIVE MACHINE-LEARNED MODELS FOR COMPUTERIZED PREDICTIONS
In an example, predictions/recommendations using machine learned models are made even more accurate by using three models instead of a single Generalized Linear Mixed (GLMix) model. Specifically, rather than having a single GLMix model with different coefficients for users and items, three separate...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In an example, predictions/recommendations using machine learned models are made even more accurate by using three models instead of a single Generalized Linear Mixed (GLMix) model. Specifically, rather than having a single GLMix model with different coefficients for users and items, three separate models are used and then combined. Each of these models has different granularities and dimensions. A global model models the similarity between user attributes (e.g., from the member profile or activity history) and item attributes. A per-user model models user attributes and activity history. A per-item model models item attributes and activity history. Such a model may be termed a Generalized Additive Mixed Effect (GAME) model. |
---|