GENERALIZED ADDITIVE MACHINE-LEARNED MODELS FOR COMPUTERIZED PREDICTIONS

In an example, predictions/recommendations using machine learned models are made even more accurate by using three models instead of a single Generalized Linear Mixed (GLMix) model. Specifically, rather than having a single GLMix model with different coefficients for users and items, three separate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Shelkovnykov, Alex, Ma, Yiming, Fleming, Josh, Chen, Bee-Chung, Agarwal, Deepak
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In an example, predictions/recommendations using machine learned models are made even more accurate by using three models instead of a single Generalized Linear Mixed (GLMix) model. Specifically, rather than having a single GLMix model with different coefficients for users and items, three separate models are used and then combined. Each of these models has different granularities and dimensions. A global model models the similarity between user attributes (e.g., from the member profile or activity history) and item attributes. A per-user model models user attributes and activity history. A per-item model models item attributes and activity history. Such a model may be termed a Generalized Additive Mixed Effect (GAME) model.