SYSTEMS AND METHODS FOR GENERATING AND UPDATING MACHINE HYBRID DEEP LEARNING MODELS
Systems and methods for improvements in AI model learning and updating are provided. The model updating may reuse existing business conversations as the training data set. Features within the dataset may be defined and extracted. Models may be selected and parameters for the models defined. Within a...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Systems and methods for improvements in AI model learning and updating are provided. The model updating may reuse existing business conversations as the training data set. Features within the dataset may be defined and extracted. Models may be selected and parameters for the models defined. Within a distributed computing setting the parameters may be optimized, and the models deployed. The training data may be augmented over time to improve the models. Deep learning models may be employed to improve system accuracy, as can active learning techniques. The models developed and updated may be employed by a response system generally, or may function to enable specific types of AI systems. One such a system may be an AI assistant that is designed to take use cases and objectives, and execute tasks until the objectives are met. Another system capable of leveraging the models includes an automated question answering system utilizing approved answers. Yet another system for utilizing these various classification models is an intent based classification system for action determination. Lastly, it should be noted that any of the above systems may be further enhanced by enabling multiple language analysis. |
---|