DENSITY ESTIMATION NETWORK FOR UNSUPERVISED ANOMALY DETECTION

Systems and methods for preventing cyberattacks using a Density Estimation Network (DEN) for unsupervised anomaly detection, including constructing the DEN using acquired network traffic data by performing end-to-end training. The training includes generating low-dimensional vector representations o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Cho, Daeki, Lumezanu, Cristian, Zong, Bo, Chen, Haifeng, Song, Qi
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Cho, Daeki
Lumezanu, Cristian
Zong, Bo
Chen, Haifeng
Song, Qi
description Systems and methods for preventing cyberattacks using a Density Estimation Network (DEN) for unsupervised anomaly detection, including constructing the DEN using acquired network traffic data by performing end-to-end training. The training includes generating low-dimensional vector representations of the network traffic data by performing dimensionality reduction of the network traffic data, predicting mixture membership distribution parameters for each of the low-dimensional representations by performing density estimation using a Gaussian Mixture Model (GMM) framework, and formulating an objective function to estimate an energy and determine a density level of the low-dimensional representations for anomaly detection, with an anomaly being identified when the energy exceeds a pre-defined threshold. Cyberattacks are prevented by blocking transmission of network flows with identified anomalies by directly filtering out the flows using a network traffic monitor.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2019124045A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2019124045A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2019124045A13</originalsourceid><addsrcrecordid>eNrjZLB1cfUL9gyJVHANDvH0dQzx9PdT8HMNCfcP8lZw8w9SCPULDg1wDQrzDHZ1UXD08_d19IlUcHENcXUGKeVhYE1LzClO5YXS3AzKbq4hzh66qQX58anFBYnJqXmpJfGhwUYGhpaGRiYGJqaOhsbEqQIAI2orWw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>DENSITY ESTIMATION NETWORK FOR UNSUPERVISED ANOMALY DETECTION</title><source>esp@cenet</source><creator>Cho, Daeki ; Lumezanu, Cristian ; Zong, Bo ; Chen, Haifeng ; Song, Qi</creator><creatorcontrib>Cho, Daeki ; Lumezanu, Cristian ; Zong, Bo ; Chen, Haifeng ; Song, Qi</creatorcontrib><description>Systems and methods for preventing cyberattacks using a Density Estimation Network (DEN) for unsupervised anomaly detection, including constructing the DEN using acquired network traffic data by performing end-to-end training. The training includes generating low-dimensional vector representations of the network traffic data by performing dimensionality reduction of the network traffic data, predicting mixture membership distribution parameters for each of the low-dimensional representations by performing density estimation using a Gaussian Mixture Model (GMM) framework, and formulating an objective function to estimate an energy and determine a density level of the low-dimensional representations for anomaly detection, with an anomaly being identified when the energy exceeds a pre-defined threshold. Cyberattacks are prevented by blocking transmission of network flows with identified anomalies by directly filtering out the flows using a network traffic monitor.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRICITY ; PHYSICS ; TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><creationdate>2019</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20190425&amp;DB=EPODOC&amp;CC=US&amp;NR=2019124045A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76318</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20190425&amp;DB=EPODOC&amp;CC=US&amp;NR=2019124045A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Cho, Daeki</creatorcontrib><creatorcontrib>Lumezanu, Cristian</creatorcontrib><creatorcontrib>Zong, Bo</creatorcontrib><creatorcontrib>Chen, Haifeng</creatorcontrib><creatorcontrib>Song, Qi</creatorcontrib><title>DENSITY ESTIMATION NETWORK FOR UNSUPERVISED ANOMALY DETECTION</title><description>Systems and methods for preventing cyberattacks using a Density Estimation Network (DEN) for unsupervised anomaly detection, including constructing the DEN using acquired network traffic data by performing end-to-end training. The training includes generating low-dimensional vector representations of the network traffic data by performing dimensionality reduction of the network traffic data, predicting mixture membership distribution parameters for each of the low-dimensional representations by performing density estimation using a Gaussian Mixture Model (GMM) framework, and formulating an objective function to estimate an energy and determine a density level of the low-dimensional representations for anomaly detection, with an anomaly being identified when the energy exceeds a pre-defined threshold. Cyberattacks are prevented by blocking transmission of network flows with identified anomalies by directly filtering out the flows using a network traffic monitor.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRICITY</subject><subject>PHYSICS</subject><subject>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2019</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLB1cfUL9gyJVHANDvH0dQzx9PdT8HMNCfcP8lZw8w9SCPULDg1wDQrzDHZ1UXD08_d19IlUcHENcXUGKeVhYE1LzClO5YXS3AzKbq4hzh66qQX58anFBYnJqXmpJfGhwUYGhpaGRiYGJqaOhsbEqQIAI2orWw</recordid><startdate>20190425</startdate><enddate>20190425</enddate><creator>Cho, Daeki</creator><creator>Lumezanu, Cristian</creator><creator>Zong, Bo</creator><creator>Chen, Haifeng</creator><creator>Song, Qi</creator><scope>EVB</scope></search><sort><creationdate>20190425</creationdate><title>DENSITY ESTIMATION NETWORK FOR UNSUPERVISED ANOMALY DETECTION</title><author>Cho, Daeki ; Lumezanu, Cristian ; Zong, Bo ; Chen, Haifeng ; Song, Qi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2019124045A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2019</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRICITY</topic><topic>PHYSICS</topic><topic>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</topic><toplevel>online_resources</toplevel><creatorcontrib>Cho, Daeki</creatorcontrib><creatorcontrib>Lumezanu, Cristian</creatorcontrib><creatorcontrib>Zong, Bo</creatorcontrib><creatorcontrib>Chen, Haifeng</creatorcontrib><creatorcontrib>Song, Qi</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cho, Daeki</au><au>Lumezanu, Cristian</au><au>Zong, Bo</au><au>Chen, Haifeng</au><au>Song, Qi</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>DENSITY ESTIMATION NETWORK FOR UNSUPERVISED ANOMALY DETECTION</title><date>2019-04-25</date><risdate>2019</risdate><abstract>Systems and methods for preventing cyberattacks using a Density Estimation Network (DEN) for unsupervised anomaly detection, including constructing the DEN using acquired network traffic data by performing end-to-end training. The training includes generating low-dimensional vector representations of the network traffic data by performing dimensionality reduction of the network traffic data, predicting mixture membership distribution parameters for each of the low-dimensional representations by performing density estimation using a Gaussian Mixture Model (GMM) framework, and formulating an objective function to estimate an energy and determine a density level of the low-dimensional representations for anomaly detection, with an anomaly being identified when the energy exceeds a pre-defined threshold. Cyberattacks are prevented by blocking transmission of network flows with identified anomalies by directly filtering out the flows using a network traffic monitor.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2019124045A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC COMMUNICATION TECHNIQUE
ELECTRICITY
PHYSICS
TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION
title DENSITY ESTIMATION NETWORK FOR UNSUPERVISED ANOMALY DETECTION
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T20%3A58%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Cho,%20Daeki&rft.date=2019-04-25&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2019124045A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true