DENSITY ESTIMATION NETWORK FOR UNSUPERVISED ANOMALY DETECTION
Systems and methods for preventing cyberattacks using a Density Estimation Network (DEN) for unsupervised anomaly detection, including constructing the DEN using acquired network traffic data by performing end-to-end training. The training includes generating low-dimensional vector representations o...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Cho, Daeki Lumezanu, Cristian Zong, Bo Chen, Haifeng Song, Qi |
description | Systems and methods for preventing cyberattacks using a Density Estimation Network (DEN) for unsupervised anomaly detection, including constructing the DEN using acquired network traffic data by performing end-to-end training. The training includes generating low-dimensional vector representations of the network traffic data by performing dimensionality reduction of the network traffic data, predicting mixture membership distribution parameters for each of the low-dimensional representations by performing density estimation using a Gaussian Mixture Model (GMM) framework, and formulating an objective function to estimate an energy and determine a density level of the low-dimensional representations for anomaly detection, with an anomaly being identified when the energy exceeds a pre-defined threshold. Cyberattacks are prevented by blocking transmission of network flows with identified anomalies by directly filtering out the flows using a network traffic monitor. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2019124045A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2019124045A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2019124045A13</originalsourceid><addsrcrecordid>eNrjZLB1cfUL9gyJVHANDvH0dQzx9PdT8HMNCfcP8lZw8w9SCPULDg1wDQrzDHZ1UXD08_d19IlUcHENcXUGKeVhYE1LzClO5YXS3AzKbq4hzh66qQX58anFBYnJqXmpJfGhwUYGhpaGRiYGJqaOhsbEqQIAI2orWw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>DENSITY ESTIMATION NETWORK FOR UNSUPERVISED ANOMALY DETECTION</title><source>esp@cenet</source><creator>Cho, Daeki ; Lumezanu, Cristian ; Zong, Bo ; Chen, Haifeng ; Song, Qi</creator><creatorcontrib>Cho, Daeki ; Lumezanu, Cristian ; Zong, Bo ; Chen, Haifeng ; Song, Qi</creatorcontrib><description>Systems and methods for preventing cyberattacks using a Density Estimation Network (DEN) for unsupervised anomaly detection, including constructing the DEN using acquired network traffic data by performing end-to-end training. The training includes generating low-dimensional vector representations of the network traffic data by performing dimensionality reduction of the network traffic data, predicting mixture membership distribution parameters for each of the low-dimensional representations by performing density estimation using a Gaussian Mixture Model (GMM) framework, and formulating an objective function to estimate an energy and determine a density level of the low-dimensional representations for anomaly detection, with an anomaly being identified when the energy exceeds a pre-defined threshold. Cyberattacks are prevented by blocking transmission of network flows with identified anomalies by directly filtering out the flows using a network traffic monitor.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRICITY ; PHYSICS ; TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><creationdate>2019</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20190425&DB=EPODOC&CC=US&NR=2019124045A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76318</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20190425&DB=EPODOC&CC=US&NR=2019124045A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Cho, Daeki</creatorcontrib><creatorcontrib>Lumezanu, Cristian</creatorcontrib><creatorcontrib>Zong, Bo</creatorcontrib><creatorcontrib>Chen, Haifeng</creatorcontrib><creatorcontrib>Song, Qi</creatorcontrib><title>DENSITY ESTIMATION NETWORK FOR UNSUPERVISED ANOMALY DETECTION</title><description>Systems and methods for preventing cyberattacks using a Density Estimation Network (DEN) for unsupervised anomaly detection, including constructing the DEN using acquired network traffic data by performing end-to-end training. The training includes generating low-dimensional vector representations of the network traffic data by performing dimensionality reduction of the network traffic data, predicting mixture membership distribution parameters for each of the low-dimensional representations by performing density estimation using a Gaussian Mixture Model (GMM) framework, and formulating an objective function to estimate an energy and determine a density level of the low-dimensional representations for anomaly detection, with an anomaly being identified when the energy exceeds a pre-defined threshold. Cyberattacks are prevented by blocking transmission of network flows with identified anomalies by directly filtering out the flows using a network traffic monitor.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRICITY</subject><subject>PHYSICS</subject><subject>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2019</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLB1cfUL9gyJVHANDvH0dQzx9PdT8HMNCfcP8lZw8w9SCPULDg1wDQrzDHZ1UXD08_d19IlUcHENcXUGKeVhYE1LzClO5YXS3AzKbq4hzh66qQX58anFBYnJqXmpJfGhwUYGhpaGRiYGJqaOhsbEqQIAI2orWw</recordid><startdate>20190425</startdate><enddate>20190425</enddate><creator>Cho, Daeki</creator><creator>Lumezanu, Cristian</creator><creator>Zong, Bo</creator><creator>Chen, Haifeng</creator><creator>Song, Qi</creator><scope>EVB</scope></search><sort><creationdate>20190425</creationdate><title>DENSITY ESTIMATION NETWORK FOR UNSUPERVISED ANOMALY DETECTION</title><author>Cho, Daeki ; Lumezanu, Cristian ; Zong, Bo ; Chen, Haifeng ; Song, Qi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2019124045A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2019</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRICITY</topic><topic>PHYSICS</topic><topic>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</topic><toplevel>online_resources</toplevel><creatorcontrib>Cho, Daeki</creatorcontrib><creatorcontrib>Lumezanu, Cristian</creatorcontrib><creatorcontrib>Zong, Bo</creatorcontrib><creatorcontrib>Chen, Haifeng</creatorcontrib><creatorcontrib>Song, Qi</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cho, Daeki</au><au>Lumezanu, Cristian</au><au>Zong, Bo</au><au>Chen, Haifeng</au><au>Song, Qi</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>DENSITY ESTIMATION NETWORK FOR UNSUPERVISED ANOMALY DETECTION</title><date>2019-04-25</date><risdate>2019</risdate><abstract>Systems and methods for preventing cyberattacks using a Density Estimation Network (DEN) for unsupervised anomaly detection, including constructing the DEN using acquired network traffic data by performing end-to-end training. The training includes generating low-dimensional vector representations of the network traffic data by performing dimensionality reduction of the network traffic data, predicting mixture membership distribution parameters for each of the low-dimensional representations by performing density estimation using a Gaussian Mixture Model (GMM) framework, and formulating an objective function to estimate an energy and determine a density level of the low-dimensional representations for anomaly detection, with an anomaly being identified when the energy exceeds a pre-defined threshold. Cyberattacks are prevented by blocking transmission of network flows with identified anomalies by directly filtering out the flows using a network traffic monitor.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2019124045A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC COMMUNICATION TECHNIQUE ELECTRICITY PHYSICS TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION |
title | DENSITY ESTIMATION NETWORK FOR UNSUPERVISED ANOMALY DETECTION |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T20%3A58%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Cho,%20Daeki&rft.date=2019-04-25&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2019124045A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |