DENSITY ESTIMATION NETWORK FOR UNSUPERVISED ANOMALY DETECTION
Systems and methods for preventing cyberattacks using a Density Estimation Network (DEN) for unsupervised anomaly detection, including constructing the DEN using acquired network traffic data by performing end-to-end training. The training includes generating low-dimensional vector representations o...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Systems and methods for preventing cyberattacks using a Density Estimation Network (DEN) for unsupervised anomaly detection, including constructing the DEN using acquired network traffic data by performing end-to-end training. The training includes generating low-dimensional vector representations of the network traffic data by performing dimensionality reduction of the network traffic data, predicting mixture membership distribution parameters for each of the low-dimensional representations by performing density estimation using a Gaussian Mixture Model (GMM) framework, and formulating an objective function to estimate an energy and determine a density level of the low-dimensional representations for anomaly detection, with an anomaly being identified when the energy exceeds a pre-defined threshold. Cyberattacks are prevented by blocking transmission of network flows with identified anomalies by directly filtering out the flows using a network traffic monitor. |
---|