EMBEDDING HUMAN LABELER INFLUENCES IN MACHINE LEARNING INTERFACES IN COMPUTING ENVIRONMENTS

A mechanism is described for facilitating embedding of human labeler influences in machine learning interfaces in computing environments, according to one embodiment. A method of embodiments, as described herein, includes detecting sensor data via one or more sensors of a computing device, and acces...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Anderson, Glen J
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A mechanism is described for facilitating embedding of human labeler influences in machine learning interfaces in computing environments, according to one embodiment. A method of embodiments, as described herein, includes detecting sensor data via one or more sensors of a computing device, and accessing human labeler data at one or more databases coupled to the computing device. The method may further include evaluating relevance between the sensor data and the human labeler data, where the relevance identifies meaning of the sensor data based on human behavior corresponding to the human labeler data, and associating, based on the relevance, human labeler data with the sensor data to classify the sensor data as labeled data. The method may further include training, based on the labeled data, a machine learning model to extract human influences from the labeled data, and embed one or more of the human influences in one or more environments representing one or more physical scenarios involving one or more humans.