Storage Anomaly Detection

The technology described in this document is, among other things, capable of efficiently monitoring storage device signal data for anomalies. In an example method, signal data for a plurality of non-transitory storage devices is collected. The method determines a hyper feature representation from th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Shivaji Shivkumar, Sudhakaran Ryan, Barajas Zamora Joel, Lee Yong Bum
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Shivaji Shivkumar
Sudhakaran Ryan
Barajas Zamora Joel
Lee Yong Bum
description The technology described in this document is, among other things, capable of efficiently monitoring storage device signal data for anomalies. In an example method, signal data for a plurality of non-transitory storage devices is collected. The method determines a hyper feature representation from the collected signal data and computes, using the hyper feature representation, scores for statistics associated with the non-transitory storage devices. The method further determines a reduced hyper feature representation aggregating the scores for each of the statistics associated with each of the non-transitory storage devices; generates, using the reduced hyper feature representation, storage device scores for the non-transitory storage devices of the plurality, respectively; and identifies one or more non-transitory storage devices from among the plurality of non-transitory storage devices exhibiting anomalous storage device behavior using the storage device scores.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2018032385A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2018032385A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2018032385A13</originalsourceid><addsrcrecordid>eNrjZJAMLskvSkxPVXDMy89NzKlUcEktSU0uyczP42FgTUvMKU7lhdLcDMpuriHOHrqpBfnxqcUFicmpeakl8aHBRgaGFgbGRsYWpo6GxsSpAgCeECN5</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Storage Anomaly Detection</title><source>esp@cenet</source><creator>Shivaji Shivkumar ; Sudhakaran Ryan ; Barajas Zamora Joel ; Lee Yong Bum</creator><creatorcontrib>Shivaji Shivkumar ; Sudhakaran Ryan ; Barajas Zamora Joel ; Lee Yong Bum</creatorcontrib><description>The technology described in this document is, among other things, capable of efficiently monitoring storage device signal data for anomalies. In an example method, signal data for a plurality of non-transitory storage devices is collected. The method determines a hyper feature representation from the collected signal data and computes, using the hyper feature representation, scores for statistics associated with the non-transitory storage devices. The method further determines a reduced hyper feature representation aggregating the scores for each of the statistics associated with each of the non-transitory storage devices; generates, using the reduced hyper feature representation, storage device scores for the non-transitory storage devices of the plurality, respectively; and identifies one or more non-transitory storage devices from among the plurality of non-transitory storage devices exhibiting anomalous storage device behavior using the storage device scores.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2018</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20180201&amp;DB=EPODOC&amp;CC=US&amp;NR=2018032385A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20180201&amp;DB=EPODOC&amp;CC=US&amp;NR=2018032385A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Shivaji Shivkumar</creatorcontrib><creatorcontrib>Sudhakaran Ryan</creatorcontrib><creatorcontrib>Barajas Zamora Joel</creatorcontrib><creatorcontrib>Lee Yong Bum</creatorcontrib><title>Storage Anomaly Detection</title><description>The technology described in this document is, among other things, capable of efficiently monitoring storage device signal data for anomalies. In an example method, signal data for a plurality of non-transitory storage devices is collected. The method determines a hyper feature representation from the collected signal data and computes, using the hyper feature representation, scores for statistics associated with the non-transitory storage devices. The method further determines a reduced hyper feature representation aggregating the scores for each of the statistics associated with each of the non-transitory storage devices; generates, using the reduced hyper feature representation, storage device scores for the non-transitory storage devices of the plurality, respectively; and identifies one or more non-transitory storage devices from among the plurality of non-transitory storage devices exhibiting anomalous storage device behavior using the storage device scores.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2018</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZJAMLskvSkxPVXDMy89NzKlUcEktSU0uyczP42FgTUvMKU7lhdLcDMpuriHOHrqpBfnxqcUFicmpeakl8aHBRgaGFgbGRsYWpo6GxsSpAgCeECN5</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Shivaji Shivkumar</creator><creator>Sudhakaran Ryan</creator><creator>Barajas Zamora Joel</creator><creator>Lee Yong Bum</creator><scope>EVB</scope></search><sort><creationdate>20180201</creationdate><title>Storage Anomaly Detection</title><author>Shivaji Shivkumar ; Sudhakaran Ryan ; Barajas Zamora Joel ; Lee Yong Bum</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2018032385A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2018</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Shivaji Shivkumar</creatorcontrib><creatorcontrib>Sudhakaran Ryan</creatorcontrib><creatorcontrib>Barajas Zamora Joel</creatorcontrib><creatorcontrib>Lee Yong Bum</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shivaji Shivkumar</au><au>Sudhakaran Ryan</au><au>Barajas Zamora Joel</au><au>Lee Yong Bum</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Storage Anomaly Detection</title><date>2018-02-01</date><risdate>2018</risdate><abstract>The technology described in this document is, among other things, capable of efficiently monitoring storage device signal data for anomalies. In an example method, signal data for a plurality of non-transitory storage devices is collected. The method determines a hyper feature representation from the collected signal data and computes, using the hyper feature representation, scores for statistics associated with the non-transitory storage devices. The method further determines a reduced hyper feature representation aggregating the scores for each of the statistics associated with each of the non-transitory storage devices; generates, using the reduced hyper feature representation, storage device scores for the non-transitory storage devices of the plurality, respectively; and identifies one or more non-transitory storage devices from among the plurality of non-transitory storage devices exhibiting anomalous storage device behavior using the storage device scores.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2018032385A1
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Storage Anomaly Detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A58%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Shivaji%20Shivkumar&rft.date=2018-02-01&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2018032385A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true