Optimizing Total Energy Delivered in Nanosecond Pulses for Triggering Apoptosis in Cultured Cells
An optimization of electrical characteristics for treatments of tumor or other abnormal cells in culture with sub-microsecond, high-electric field electrical pulses is disclosed. The voltages, pulse widths, and number of pulses are chosen such that the treatment energy is 10-20 J/mL. That is, U=n*Δt...
Gespeichert in:
Hauptverfasser: | , , , , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An optimization of electrical characteristics for treatments of tumor or other abnormal cells in culture with sub-microsecond, high-electric field electrical pulses is disclosed. The voltages, pulse widths, and number of pulses are chosen such that the treatment energy is 10-20 J/mL. That is, U=n*Δt*V*I/volume is 10-20 J/mL, in which n is the number of pulses, Δt is the duration of each pulse, V is the voltage, I is current, and volume is the area of parallel electrodes times the distance between them. V divided by the distance between the electrodes can be in an effective range of 6 kV/cm to 30 kV/cm, 60 kV/cm, 100 kV/cm, or higher intensities. Rows of needle electrodes, blade electrodes, or other configurations of electrodes can approximate parallel electrodes. |
---|