Gamma-Ray Detectors For Downhole Applications

Methods and related systems are described for gamma-ray detection. A gamma-ray detector is made depending on its properties and how those properties are affected by the data analysis. Desirable properties for a downhole detector include; high temperature operation, reliable/robust packaging, good re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Berheide Markus, Zhou Zilu, Stephenson Kenneth E, Roscoe Bradley Albert, Grau James A
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Methods and related systems are described for gamma-ray detection. A gamma-ray detector is made depending on its properties and how those properties are affected by the data analysis. Desirable properties for a downhole detector include; high temperature operation, reliable/robust packaging, good resolution, high countrate capability, high density, high Z, low radioactive background, low neutron cross-section, high light output, single decay time, efficiency, linearity, size availability, etc. Since no single detector has the optimum of all these properties, a downhole tool design preferably picks the best combination of these in existing detectors, which will optimize the performance of the measurement in the required environment and live with the remaining non-optimum properties. A preferable detector choice is one where the required measurement precision (logging speed) is obtained for all of the required inelastic elements and/or minimization of unwanted background signals that complicate the data analysis.