CONTENT-AWARE DOMAIN ADAPTATION FOR CROSS-DOMAIN CLASSIFICATION
An adaptation method includes using a first classifier trained on projected representations of labeled objects from a first domain to predict pseudo-labels for unlabeled objects in a second domain, based on their projected representations. A classifier ensemble is iteratively learned. The ensemble i...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An adaptation method includes using a first classifier trained on projected representations of labeled objects from a first domain to predict pseudo-labels for unlabeled objects in a second domain, based on their projected representations. A classifier ensemble is iteratively learned. The ensemble includes a weighted combination of the first classifier and a second classifier. This includes training the second classifier on the original representations of the unlabeled objects for which a confidence for respective pseudo-labels exceeds a threshold. A classifier ensemble is constructed as a weighted combination of the first classifier and the second classifier. Pseudo-labels are predicted for the remaining original representations of the unlabeled objects with the classifier ensemble and weights of the first and second classifiers in the classifier ensemble are adjusted. As the iterations proceed, the unlabeled objects progressively receive pseudo-labels which can be used for retraining the second classifier. |
---|