Si3N4 insulator material for corona discharge igniter systems
A silicon nitride material is disclosed which has properties necessary for efficient operation of a corona discharge igniter system in an internal combustion gas engine allowing an increase in fuel efficiency of over 10%. The material is disclosed in a range of compositions, all of which exhibit hig...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A silicon nitride material is disclosed which has properties necessary for efficient operation of a corona discharge igniter system in an internal combustion gas engine allowing an increase in fuel efficiency of over 10%. The material is disclosed in a range of compositions, all of which exhibit high dielectric strengths, high mechanical strength, thermal shock resistance and fracture toughness, low dielectric constant and loss tangent and electrical resistivity, all of which significantly increase the efficiency of the igniter system over current state of the art alumina insulators. Moreover, the materials retain their dielectric strength and structural integrity at elevated temperatures, up to 800° C.-1000° C. One embodiment comprises a sintered silicon nitride process comprising powder batching, binder removal and sintering. In the preferred embodiment the method of manufacture for silicon nitride is an SRBSN process comprising powder batching, powder pressing, binder removal, nitriding and sintering. |
---|