Apparatus to Control Carrier Spacing in a Multi-Carrier Optical Transmitter

Consistent with the present disclosure, data, in digital form, is received by a transmit node of an optical communication system, and is then provided to a modulator that, in turn, modulates light, received from an optical source at one of a plurality of periodically and preferably minimally spaced...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: VAN LEEUWEN MICHAEL FRANCIS, XU HAI, MERTZ PIERRE, MCNICOL JOHN D
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Consistent with the present disclosure, data, in digital form, is received by a transmit node of an optical communication system, and is then provided to a modulator that, in turn, modulates light, received from an optical source at one of a plurality of periodically and preferably minimally spaced wavelengths. The plurality of periodically spaced wavelengths or carriers are grouped together with minimal carrier spacing, to form a superchannel. The carrier spacing between adjacent carriers is determined by detecting a beat frequency of a combined optical signal that includes the outputs of two adjacent optical sources. The beat frequency corresponds to a frequency difference between the outputs of the adjacent carriers. This frequency difference should correspond to a desired carrier spacing between each of the plurality of carriers. A frequency error between the beat frequency and the desired carrier spacing is then measured by down-converting the beat frequency with respect to a target reference frequency corresponding to the desired carrier frequency spacing. Based on the determined frequency error, the optical sources are controlled to adjust in frequency to minimize or reduce the frequency error to zero. For every pair of adjacent carriers, the corresponding outputs of the optical sources are compared in the above manner to determine a plurality of frequency errors. Each optical source can thus be tuned in order to realize a precise carrier spacing between each of the adjacent carriers.