BLOOD VESSEL SEGMENTATION WITH THREE DIMENSIONAL SPECTRAL DOMAIN OPTICAL COHERENCE TOMOGRAPHY
In the context of the early detection and monitoring of eye diseases, such as glaucoma and diabetic retinopathy, the use of optical coherence tomography presents the difficulty, with respect to blood vessel segmentation, of weak visibility of vessel pattern in the OCT fundus image. To address this p...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the context of the early detection and monitoring of eye diseases, such as glaucoma and diabetic retinopathy, the use of optical coherence tomography presents the difficulty, with respect to blood vessel segmentation, of weak visibility of vessel pattern in the OCT fundus image. To address this problem, a boosting learning approach uses three-dimensional (3D) information to effect automated segmentation of retinal blood vessels. The automated blood vessel segmentation technique described herein is based on 3D spectral domain OCT and provides accurate vessel pattern for clinical analysis, for retinal image registration, and for early diagnosis and monitoring of the progression of glaucoma and other retinal diseases. The technique employs a machine learning algorithm to identify blood vessel automatically in 3D OCT image, in a manner that does not rely on retinal layer segmentation. |
---|