MINING TEMPORAL PATTERNS IN LONGITUDINAL EVENT DATA USING DISCRETE EVENT MATRICES AND SPARSE CODING

Methods and systems for event pattern mining are shown that include representing longitudinal event data in a measurable geometric space as a temporal event matrix representation (TEMR) using spatial temporal shapes, wherein event data is organized into hierarchical categories of event type and perf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: WANG FEI, LEE NOAH, HU JIAYING, KOHN MARTIN S, EBADOLLAHI SHAHRAM, SORRENTINO ROBERT K, SUN JIMENG
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Methods and systems for event pattern mining are shown that include representing longitudinal event data in a measurable geometric space as a temporal event matrix representation (TEMR) using spatial temporal shapes, wherein event data is organized into hierarchical categories of event type and performing temporal event pattern mining with a processor by locating visual event patterns among the spatial temporal shapes of said TEMR using a constraint sparse coding framework.