UNSUPERVISED LEARNING USING GLOBAL FEATURES, INCLUDING FOR LOG-LINEAR MODEL WORD SEGMENTATION
Described is a technology for performing unsupervised learning using global features extracted from unlabeled examples. The unsupervised learning process may be used to train a log-linear model, such as for use in morphological segmentation of words. For example, segmentations of the examples are sa...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Described is a technology for performing unsupervised learning using global features extracted from unlabeled examples. The unsupervised learning process may be used to train a log-linear model, such as for use in morphological segmentation of words. For example, segmentations of the examples are sampled based upon the global features to produce a segmented corpus and log-linear model, which are then iteratively reprocessed to produce a final segmented corpus and a log-linear model. |
---|