Hybrid Ultrafast Laser Surgery and Growth Factor Stimulation for Ultra-Precision Surgery with Healing

The present invention relates to methods for laser surgery and growth factor stimulation for ultra-precision surgery with healing. The method is achieved by cutting biological tissue using an ultrafast laser, which produces laser pulses less than 10 picosecond in duration, to induce a cold ablation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: CLOKIE CAMERON, MILLER ROBERT JOHN DWAYNE, GIRARD BRUNO, WILSON BRIAN CAMPBELL
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The present invention relates to methods for laser surgery and growth factor stimulation for ultra-precision surgery with healing. The method is achieved by cutting biological tissue using an ultrafast laser, which produces laser pulses less than 10 picosecond in duration, to induce a cold ablation process in order to avoid the formation of carbonaceous or other materials that cannot be removed efficiently or completely from the wounded area through natural healing mechanisms. By use of femtosecond lasers, a negligible amount of debris is generated and an outer layer of intact but non viable cells are created principally through shock wave induce damage and ionizing radiation effects induced by multiphoton absorption of ultrashort laser pulses. The normal healing process is blocked by this outer layer of cells as all cell contacts are still intact. Therefore the healing process must be stimulated. The healing may be triggered or accelerated, or both, by application of growth factor molecules and/or signal proteins to the effectively undamaged cells causing the damaged cells to be replaced and the wound to close. The combination of very precise laser cutting used in combination with growth factors is the key to this unique tool.