POLYPEPTIDES SHARING SEQUENCE IDENTITY WITH A FIBROBLAST GROWTH FACTOR POLYPEPTIDE AND NUCLEIC ACIDS ENCODING THE SAME

The present invention is directed to novel polypeptides having homology to the PRO533 protein and to nucleic acid molecules encoding those polypeptides. Also provided herein are vectors and host cells comprising those nucleic acid sequences, chimeric polypeptide molecules comprising the polypeptides...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: GODDARD AUDREY, LAWRENCE DAVID A, GURNEY AUSTIN L, HILLAN KENNETH J, ROY MARGARET ANN, BOTSTEIN DAVID
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The present invention is directed to novel polypeptides having homology to the PRO533 protein and to nucleic acid molecules encoding those polypeptides. Also provided herein are vectors and host cells comprising those nucleic acid sequences, chimeric polypeptide molecules comprising the polypeptides of the present invention fused to heterologous polypeptide sequences, antibodies which bind to the polypeptides of the present invention, and methods for producing the polypeptides of the present invention. The invention concerns compositions and methods for the diagnosis and treatment of neoplastic cell growth and proliferation in mammals, including humans. The invention is based on the identification of genes that are amplified in the genome of tumor cells. Such gene amplification is expected to be associated with the overexpression of the gene product and contribute to tumorigenesis and/or autocrine signaling. Accordingly, the proteins encoded by the amplified genes are believed to be useful targets for the diagnosis and/or treatment (including prevention) of certain cancers, and may act of predictors of the prognosis of tumor treatment. Furthermore, the compounds, compositions including antagonists and methods of the present invention are further expected to have therapeutic effect upon conditions characterized by FgF-19 modulation.