Ultra soft high carbon hot-rolled steel sheets and manufacturing method thereof

The present invention provides an ultra soft high carbon hot-rolled steel sheet. The ultra soft high carbon hot-rolled steel sheet contains 0.2% to 0.7% of C, 0.01% to 1.0% of Si, 0.1% to 1.0% of Mn, 0.03% or less of P, 0.035% or less of S, 0.08% or less of Al, 0.01% or less of N, and the balance be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: AOKI NAOYA, UEOKA SATOSHI, KIMURA HIDEYUKI, NAKAMURA NOBUYUKI, MITSUZUKA KENICHI, FUJITA TAKESHI
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The present invention provides an ultra soft high carbon hot-rolled steel sheet. The ultra soft high carbon hot-rolled steel sheet contains 0.2% to 0.7% of C, 0.01% to 1.0% of Si, 0.1% to 1.0% of Mn, 0.03% or less of P, 0.035% or less of S, 0.08% or less of Al, 0.01% or less of N, and the balance being Fe and incidental impurities and further contains 0.0010% to 0.0050% of B and 0.05% to 0.30% of Cr in some cases. In the texture of the steel sheet, an average ferrite grain diameter is 20 mum or more, a volume ratio of ferrite grains having a grain diameter of 10 mum or more is 80% or more, and an average carbide grain diameter is in the range of 0.10 to less than 2.0 mum. In addition, the steel sheet is manufactured by the steps, after rough rolling, performing finish rolling at a reduction ratio of 10% or more and at a finish temperature of (Ar3-20° C.) or more in a final pass, then performing first cooling within 2 seconds after the finish rolling to a cooling stop temperature of 600° C. or less at a cooling rate of more than 120° C./sec, then performing second cooling so that the steel thus processed is held at 600° C. or less, then performing coiling at 580° C. or less, followed by pickling, and then performing spheroidizing annealing at a temperature in the range of 680° C. to the Ac1 transformation point.