Anodizing Electrolytes Using A Dual Acid System For High Voltage Electrolytic Capacitor Anodes
An improved formation electrolyte and method for anodizing valve metal anodes used in electrolytic capacitors, particularly for high voltage sintered tantalum powder anode, is described. The anodizing electrolyte composition is comprised of 1) a phosphorus oxyacid and/or its salt, such as phosphoric...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An improved formation electrolyte and method for anodizing valve metal anodes used in electrolytic capacitors, particularly for high voltage sintered tantalum powder anode, is described. The anodizing electrolyte composition is comprised of 1) a phosphorus oxyacid and/or its salt, such as phosphoric acid and ammonium phosphate; 2) a weak inorganic acid/salt (such as boric acid, ammonium borate) or a weak carboxylic acid/salt; 3) water; and 4) a protic solvent or a mixture of two or more protic solvents. The weak mono-carboxylic acid/salt has 2 to 7 carbon atoms and the weak di- or poly-carboxylic acid/salt has 3 to 13 carbon atoms. The present electrolytes have high anodizing breakdown voltage capability and the formed dielectric oxides have improved oxide quality including good oxide hydration resistant ability, and result in more stable capacitor performance. These properties are particularly important for critical applications such as implantable cardioverter defibrillators (ICDs). Significantly, this means that fewer capacitors are needed to meet an ICD's operating voltage. |
---|