Doped stoichiometric lithium niobate and lithium tantalate for self-frequency conversion lasers

In accordance with the present invention, a crystal laser material that is suitable for self doubling is presented. A crystal according to the present invention includes a stoichiometric lithium niobate crystal isomorph host material doped with at least one laser ion. In some embodiments, the stoich...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: WECHSLER BARRY A, SCRIPSICK MICHAEL P
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In accordance with the present invention, a crystal laser material that is suitable for self doubling is presented. A crystal according to the present invention includes a stoichiometric lithium niobate crystal isomorph host material doped with at least one laser ion. In some embodiments, the stoichiometric lithium niobate crystal isomorph host material is lithium niobate. In some embodiments, the stoichiometric lithium niobate crystal isomorph host material is lithium tantalate. In some embodiments, the at least one laser ion includes Ytterbium. In some embodiments, the at least one laser ion includes a rare-earth ion. In some embodiments, the stoichiometric lithium niobate crystal isomorph host material is periodically poled to provide quasi-phase matching. Additionally, further dopant ions, for example Magnesium, can be included.