Synchronous clock generation circuit capable of ensuring wide lock-in range and attaining lower jitter
At a first step, in a synchronous clock generation circuit, the number of delay stages serving as a digital PLL circuit is increased/decreased, and an oscillation circuit performs an oscillation operation when an optimal number of delay stages is set. Thereafter, in an operation at a second step, a...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | At a first step, in a synchronous clock generation circuit, the number of delay stages serving as a digital PLL circuit is increased/decreased, and an oscillation circuit performs an oscillation operation when an optimal number of delay stages is set. Thereafter, in an operation at a second step, a control voltage is controlled with the optimal number of delay stages being set for serving as an analog PLL circuit, thereby attaining a lock-in state. As the lock-in state is finally maintained under analog control, an excellent jitter characteristic can be obtained. Thus, ensuring a lock-in range that has been a problem in the analog PLL circuit is solved by varying the number of delay stages in the operation at the first step, and a high jitter characteristic that has been a problem in a digital PLL circuit can be solved by analog control in the operation at the second step. |
---|