Semiconductor devices and their peripheral termination
A semiconductor device, such as a power MOSFET, Schottky rectifier or p-n rectifier, has a voltage-sustaining zone (20) between a first (21, 23, 31a) and second (22) device regions adjacent to respective first and second opposite surfaces (11, 12) of a semiconductor body 10. Trenched field-shaping r...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A semiconductor device, such as a power MOSFET, Schottky rectifier or p-n rectifier, has a voltage-sustaining zone (20) between a first (21, 23, 31a) and second (22) device regions adjacent to respective first and second opposite surfaces (11, 12) of a semiconductor body 10. Trenched field-shaping regions (40) including a resistive path (42) extend through the voltage-sustaining zone (20) to the underlying second region (22), so as to enhance the breakdown voltage of the device. The voltage-sustaining zone (20) and the trenched field-shaping regions (40) are present in both the active device area (A) and in the peripheral area (P) of the device. A further resistive path (53) extends across the first surface (11), outwardly over the peripheral area (P). This further resistive path (53) provides a potential divider that is connected to the respective resistive paths (42) of successive underlying trenched field-shaping regions (40) in the peripheral area (P). Thereby a gradual variation is achieved in the potential (V2) applied by the successive trenched field-shaping regions (40) in the peripheral area (P) of the voltage-sustaining zone (20). This advantageous peripheral termination reduces device susceptibility to deviations in the field profile in this peripheral area (P). |
---|