Planetary rotary machine using apertures, volutes and continuous carbon fiber reinforced peek seals

Apertures through each face of a planetary rotor, volutes for low loss delivery and collection of fluid to and from the working volumes of a planetary rotary pump, compressor, or turbine, and zero clearance seals by using continuous carbon fiber reinforced polyetheretherketone (PEEK) or other self-l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: SCHUMM BROOKE, MANNER DAVID B, KIRTLEY KEVIN R
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Apertures through each face of a planetary rotor, volutes for low loss delivery and collection of fluid to and from the working volumes of a planetary rotary pump, compressor, or turbine, and zero clearance seals by using continuous carbon fiber reinforced polyetheretherketone (PEEK) or other self-lubricating materials significantly improve the volumetric flow rate of such rotary pumps compressors or turbines. By establishing a means to vent each working volume to an intake or exhaust port at arbitrary rotor positions, apertures linking working volumes to intake or exhaust ports allows each working volume of a multilobe planetary rotary pump to function independently near peak volumetric efficiency. An additional means to improve the performance of planetary rotary pumps has been established by using scroll-like volutes which collect and deliver the exhaust and intake flow for each working volume in a manner which reduces the fluid dynamic loss associated with conventional sudden expansions and contractions found at the inlet and exit of a plenum. To minimize leakage between the separate working volumes and improve performance, self lubricated continuous carbon fiber reinforced polyetheretherketone seals are employed for components in high speed sliding contact. The continuous carbon fiber reinforced PEEK can withstand high sliding speeds, high temperatures with low wear and excellent foreign object impact resistance.