Screen-printing paste and screen-printing method of fabricating a gas diffusion electrode
A screen-printing paste as a starting material for fabricating a gas diffusion electrode through screen-printing includes at least one polymer, at least one metallic catalyst, and a high-boiling solvent. The polymer is a binder including poly(butyl acrylate)-polymethacrylate copolymer, a poly(vinyl...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A screen-printing paste as a starting material for fabricating a gas diffusion electrode through screen-printing includes at least one polymer, at least one metallic catalyst, and a high-boiling solvent. The polymer is a binder including poly(butyl acrylate)-polymethacrylate copolymer, a poly(vinyl alcohol), and a poly(ethylene oxide). The polymer can be two polymers, a first being used for hydrophobicization and present in an amount of between 0 to 10% by weight based on a content of the metallic-catalyst, and a second being a binder. A screen-printing method of fabricating the electrode for a fuel cell includes forming a screen-printing layer having a thickness between 3 and 40 mum by applying the screen-printing paste to a base. The solvent and the polymer serve as a screen-printing medium. The screen-printing layer is baked to allow only residues of the solvent and the polymer to remain, which do not interfere with using the electrode in a fuel cell. The method uses a polybutylacrylate-polymethacrylate copolymer as a binder in the screen-printing paste. |
---|