Controlled surface chemistry for polytypic and microstructural selective growth on hexagonal SiC substrates

A high-throughput method for identifying single crystal hexagonal-SiC off-axis surfaces that support surface chemistries and kinetics to selectively produce various epitaxial growth modes of the metastable 3C-SiC polytype is provided. In execution of the aforementioned method, the present invention...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Johnson, II, Jesse A, Duzik, Adam J, Tucker, Brian P, Hill, Justin J
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A high-throughput method for identifying single crystal hexagonal-SiC off-axis surfaces that support surface chemistries and kinetics to selectively produce various epitaxial growth modes of the metastable 3C-SiC polytype is provided. In execution of the aforementioned method, the present invention also encompasses the use of a single crystal hexagonal-SiC domed substrate, and a method for manufacturing thereof. Said method for screening silicon carbide growth surfaces is comprised of: fabrication of a silicon carbide domed substrate; forming a step-terrace growth surface on the domed surface of said silicon carbide domed substrate by hydrogen etching; performing silicon carbide deposition upon said growth surface, thereby creating an silicon carbide epitaxial domed wafer; and characterization of said silicon carbide epitaxial domed wafer. Silicon carbide deposition upon a silicon carbide domed growth surface allows for the modulation of the supersaturation ratio under a single set of growth conditions. There is provided a method to select a specific off-cut angle and orientation for a silicon carbide substrate that can be used to selectively and homogeneously grow a targeted 3C-silicon carbide microstructure best suited for the intended application.