Harmonizing composite images utilizing a transformer neural network

The present disclosure relates to systems, non-transitory computer-readable media, and methods that implement a dual-branched neural network architecture to harmonize composite images. For example, in one or more implementations, the transformer-based harmonization system uses a convolutional branch...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Zhang, He, Zhang, Jianming, Sunkavalli, Kalyan, Stotzner, Meredith Payne, Shechtman, Elya, Echevarria Vallespi, Jose Ignacio, Mandia, Frederick, Ma, Yinglan, Lin, Zhe
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The present disclosure relates to systems, non-transitory computer-readable media, and methods that implement a dual-branched neural network architecture to harmonize composite images. For example, in one or more implementations, the transformer-based harmonization system uses a convolutional branch and a transformer branch to generate a harmonized composite image based on an input composite image and a corresponding segmentation mask. More particularly, the convolutional branch comprises a series of convolutional neural network layers followed by a style normalization layer to extract localized information from the input composite image. Further, the transformer branch comprises a series of transformer neural network layers to extract global information based on different resolutions of the input composite image. Utilizing a decoder, the transformer-based harmonization system combines the local information and the global information from the corresponding convolutional branch and transformer branch to generate a harmonized composite image.